1. a)

2. a)

3.

UUCMS. No.	
B.M.S. COLLEGE FOR WOMEN BENGALURU -560004	
III SEMESTER END EXAMINATION – APRIL - 2024 M.Sc. MATHEMATICS - FUNCTIONAL ANALYSIS (CBCS Scheme – F+R)	
Instructions: 1) All questions carry equal marks. 2) Answer any five full questions.	
a) Show that a l_2^n space is a Banach space.	·
b) Show that the collection $B(X)$ of all bounded functions on a set X	is a normed linear space. (10 + 4)
a) Show that in a normed linear space	
(i) the norm is continuous.	
(ii) addition is jointly continuous	
(iii) scalar multiplication is continuous.	
b) Let N be a non-zero normed linear space. Show that N is a Banac	ch space if and only if
$S = \{x \in N : x = 1\}$ is complete.	(6 + 8)
a) Let M be a closed linear subspace of a normed linear space	ce N. Show that $\frac{N}{M}$ is a
normed linear space with the norm defined by $ x + M = inf \{ $	$ x + m : m \in M$. Also if
<i>N</i> is a Banach space then prove that $\frac{N}{M}$ is also a Banach space.	

- b) If $S: N \to N'$ is a continuous linear transformation and M a null space, then show that S induces a natural linear transformation S' of $\frac{N}{M}$ to N' such that || S || = || S' ||. (8+6)
- State and prove Hahn-Banach theorem for a complex normed linear space. 4. (14)
- 5. a) Define an inner product space and show that
 - i) $| \langle x, y \rangle \leq || x || || y ||$
 - $||x + y|| \le ||x|| + ||y||.$ ii)

1

BMSCW LIBRARY

b) Prove that in a Hilbert space *H* translation preserves convexity.

- c) Show that a closed convex subset C of a Hilbert space H contains a unique vector of smallest norm. (5 + 3 + 6)
- 6. a) Define an orthonormal set and show that if $\{e_1, e_2, ..., e_n\}$ is a finite orthonormal set in a Hilbert Space H, then

i) for an arbitrary $x \in H$, $\sum_{i=1}^{n} |\langle x, e_i \rangle|^2 \leq ||x||^2$,

ii)
$$x - \sum_{i=1}^{n} \langle x, e_i \rangle e_i \perp e_j \quad \forall j$$

- b) State and prove Riesz Representation theorem for continuous linear functionals on a Hilbert space. (7 + 7)
- 7. a) If 0 and *I* are zero and identity operators on *H* respectively, then prove that $0^* = 0$ and $I^* = I$. Also show that if *T* is a non – singular operator on *H* then T^* is also non – singular.
 - b) Let T be an operator on a Hilbert space H. Then prove the following
 - i) T = 0 if and only if $\langle Tx, y \rangle = 0$, $\forall x, y \in H$.
 - ii) T = 0 if and only if $\langle Tx, x \rangle = 0, \forall x \in H$.
 - c) Show that an operator N on a Hilbert space H is normal if and only if $|| Nx || = || N^*x ||$ for every $x \in H$. (4 + 6 + 4)
 - 8. a) Prove that an operator T on a Hilbert space H is unitary if and only if it is an isometric isomorphism of H onto itself.
 - b) State and prove spectral theorem.

(4 + 10)
